
System Composer™
User's Guide

R2020b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Composer™ User's Guide
© COPYRIGHT 2019–2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 1.3 (Release 2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Architecture Model Editing
1

Compose Architecture Visually . 1-2
Create an Architecture Model . 1-2
Components . 1-4
Ports . 1-8
Connections . 1-11
Importing Architectures . 1-13

Decompose and Reuse Components . 1-15
Decompose a Component . 1-15
Create a Reference Architecture . 1-16
Use a Reference Architecture . 1-18
Inline a Reference Architecture . 1-19
Create Variants . 1-20

Create Spotlight Views . 1-24

Build an Architecture Model from Command Line 1-27

Create Architecture Views Interactively . 1-31
Create Filtered Views . 1-31
Create Freeform Views . 1-33

Creating Architectural Views Programmatically 1-36
Example 1: Hardware Component Review Status 1-36
Example 2: FOB Locator System Supplier View . 1-37
Finding Elements in a System Composer Model Using Queries 1-38

Import and Export Architecture Models . 1-39
Define a Basic Architecture . 1-39
Import a Basic Architecture . 1-40
Extend the Basic Architecture Import . 1-40
Export an Architecture . 1-44

Display Component Hierarchy Using Hierarchy Views 1-45
Switch Between Component Diagram and Hierarchy Diagram 1-45

Requirements
2

Manage Requirements . 2-2

iii

Contents

Interface Management
3

Define Interfaces . 3-2
Create Interface . 3-2

Assign Interfaces to Ports . 3-5

Save, Link, and Delete Interfaces . 3-8
Store Interfaces in a Data Dictionary . 3-8
Add Referenced Data Dictionaries . 3-9
Use Referenced Data Dictionaries for Projects with Multiple Models 3-11

Interface Adapter . 3-14
Map Similar Interfaces . 3-14
Use Unit Delay to Break Algebraic Loop . 3-14
Use Rate Transition Between Simulink Behaviors 3-15

Define Architectural Properties
4

Define Profiles and Stereotypes . 4-2
Create a Profile and Add Stereotypes . 4-2
Add Properties with Stereotypes . 4-3
Default Stereotypes . 4-5
Stereotype-Based Styling . 4-6

Use Stereotypes and Profiles . 4-9
Apply a Stereotype . 4-9
Remove a Stereotype . 4-11
Extend a Stereotype . 4-12

Use Simulink Models with System Composer
5

Implement Components in Simulink . 5-2
Create a Simulink Behavior Model . 5-2
Link to an Existing Simulink Behavior Model . 5-4

Extract Architecture from Simulink Model . 5-5

Analyze Architecture Model
6

Create and Manage Allocations . 6-2

iv Contents

Allocate Architectures in a Tire Pressure Monitoring System 6-5

Analyze Architecture . 6-9
Set Tags and Properties for Analysis . 6-9
Create a Model Instance for Analysis . 6-11
Write Analysis Function . 6-13
Run Analysis Function . 6-14

Battery Sizing and Automotive Electrical System Analysis 6-16

Modeling System Architecture of Small UAV . 6-18

Link and Trace Requirements . 6-24

Modeling System Architecture of Keyless Entry System 6-30

Extract the Architecture of a Simulink Model Using System Composer
. 6-31

Build an Architecture Model from Command Line 6-39

Import and Export Architectures . 6-43

Import System Composer Architecture using Model Builder. 6-45

v

Architecture Model Editing

• “Compose Architecture Visually” on page 1-2
• “Decompose and Reuse Components” on page 1-15
• “Create Spotlight Views” on page 1-24
• “Build an Architecture Model from Command Line” on page 1-27
• “Create Architecture Views Interactively” on page 1-31
• “Creating Architectural Views Programmatically” on page 1-36
• “Import and Export Architecture Models” on page 1-39
• “Display Component Hierarchy Using Hierarchy Views” on page 1-45

1

Compose Architecture Visually
In this section...
“Create an Architecture Model” on page 1-2
“Components” on page 1-4
“Ports” on page 1-8
“Connections” on page 1-11
“Importing Architectures” on page 1-13

Create and edit visual diagrams to represent system architecture in System Composer™. Use visual
architecture elements, components, ports, and connections in the system composition. Model
hierarchy in architecture by decomposing components. Navigate through the hierarchy.

Create an Architecture Model
Start with a blank architecture model to model physical and logical architecture of a system. An
architecture model includes a top-level architecture that holds the composition of the system. This
top-level architecture also allows definition of interfaces of this system with other systems. Use one of
these methods to create an architecture model:

• At the command line, type

systemcomposer

Select Architecture Model.

1 Architecture Model Editing

1-2

• From a Simulink model or a System Composer architecture model. On the Simulation tab, select

New , and then select Architecture .
• At the MATLAB command line, type:

archModel = new_system('ModelName','Architecture');
open_system(archModel)

where ModelName is the name of the new model.

Save the architecture model. On the Simulation tab, select Save All . The architecture model is
saved as an .slx file.

The architecture model includes a top-level architecture that holds the composition of the system.
This top-level architecture also allows definition of interfaces of this system with other systems. The
composition represents a structured parts list — a hierarchy of components with their interfaces and
interconnections. Edit the composition in the Composition Editor.

 Compose Architecture Visually

1-3

This example shows a motion control architecture, where a sensor obtains information from a motor,
feeds that information to a controller, which in turn processes this information to send a control
signal to the motor so that it moves in a certain way. You can start with this rough description and
add component properties, interface definitions, and requirements as the design progresses.

Components
A component is a nontrivial, nearly-independent, and replaceable part of a system that fulfills a clear
function in the context of an architecture. The Component element in System Composer can
represent a component at any level of the system hierarchy, whether it is a major system component
that encompasses many subsystems, such as a controller with its hardware and software, or a
component at the lowest level of hierarchy, such as a software module for messaging.

Add Components

Use one of these methods to add components to the architecture:

• Draw a component — In the canvas, left-click and drag the mouse to create a rectangle. Release
the mouse button to see the component outline. Click the light blue outline to commit.

1 Architecture Model Editing

1-4

• Create a single component from the palette —

 Compose Architecture Visually

1-5

• Create multiple components from the palette —

Name a Component

Each component must have a name that is unique within the same architecture level. The name of the
component is highlighted upon creation so you can directly type the name. To change the name of a
component, click the component and then click its name.

1 Architecture Model Editing

1-6

Move a Component

Move a component simply by clicking and dragging it. Blue guidelines may appear to help align the
component with other components.

Resize a Component

Resize a component by dragging corners.

1 Hover the pointer over a corner to see the double arrow.

2 Left-click the corner and drag while holding the mouse button down. If you want to resize the
component proportionally, hold the Shift button as well.

 Compose Architecture Visually

1-7

3 Release the mouse button when the component reaches the size you want.

Delete a Component

Click a component and press Delete to delete it. To delete multiple components, select them while
holding the Shift key down, then press Delete or right-click and select Delete from the context
menu.

Ports
A port represents the connection point of a component to other components. For example, a sensor
might have data ports to communicate with a motor and a controller. Its input port takes data from
the motor, and the output port delivers data to the controller. You can specify data properties by
defining an interface as described in “Define Interfaces” on page 3-2.

Add a Component Port

Represent the relationship between components by defining directional interface ports. You can
organize the diagram by positioning ports on any edge of the component, in any position.

1 Pause over the side of a component. A + sign and a port outline appear.

2 Click the port outline. The component is shaded blue and a port arrow appears.

3 Click the arrow to commit the port. You can also name the port at this point.

1 Architecture Model Editing

1-8

An output port is shown with the icon and an input port is shown with the icon. By default, a
port created on the top or left edge of a component is an input port, and a port created on the bottom
or right edge is an output port. To designate port direction at creation, after you click the edge, pause
over the arrow outline to see direction options. Select Input or Output before committing the port.

You can move any port to any component edge after creation.

Add an Architecture Port

You can also create a port for the architecture that contains components. These system ports carry
the interface of the system with other systems. Pause on any edge of the system box and click when
the + sign appears. Click the left side to create input ports and click the right side to create output
ports.

 Compose Architecture Visually

1-9

Name a Port

Every port is created with a name. To change the name, click it and edit.

Ports of a component must have unique names.

Move a Port

You can move a port to any side of a component. Select the port and use arrow keys.

1 Architecture Model Editing

1-10

Arrow Key Original Port Edge Port Movement
Up Left or right If below other ports on the same

edge, move up, if not, move to
the top edge

Top or bottom No action
Right Top or bottom If to the left of other ports on

the same edge, move right, if
not, move to the right edge

Left or right No action
Down Left or right If above other ports on the same

edge, move down, if not, move
to the bottom edge

Top or bottom No action
Left Top or bottom If to the right of other ports on

the same edge, move left, if not,
move to the left edge

Left or right No action

The spacing of the ports on one side is automatic. There can be a combination of input and output
ports on the same edge.

Delete a Port

Delete a port by selecting it and pressing the Delete button.

Connections
Connections are visual representations of data flow from an output port to an input port. For
example, a connection from a motor to a sensor carries positional information.

Connect Existing Ports

Connect two ports by dragging a line:

1 Click one of the ports.
2 Keep the mouse button down while dragging a line to the other port.
3 Release the mouse button at the destination port. A black line indicates the connection is

complete. A red-dotted line appears if the connection is incomplete.

 Compose Architecture Visually

1-11

You can take these steps in both directions — input port to output port, or output port to input port.
You cannot connect ports that have the same direction.

A connection between an architecture port and a component port is shown with tags instead of lines.

Connect Components Without Ports

To quickly create ports and connections at the same time, drag a line from one component edge to
another. The direction of this connection depends on which edges of the components are used - left
and top edges are considered inputs, right and bottom edges are considered outputs. You can also
perform this operation from an existing port to a component edge.

You can create a connection between an edge that is assumed to be an input only with an edge that is
assumed to be an output. For example, you cannot connect a top edge, which is assumed to be an
input, with another top edge, unless one of them already has an output port.

1 Architecture Model Editing

1-12

Branch Connections

Connect an output port to multiple input ports by branching a connection. To branch, right-click an
existing connection and drag to an input port while holding the mouse button down. Release the
button to commit the new connection.

Create New Components Through Connections

If you start a connection from an output port and release the mouse button without a destination
port, a new component tentatively appears. Accept the new component by clicking it.

Importing Architectures
By combining the programmatic APIs of System Composer with MATLAB® support for loading and
parsing many different file and databased formats, you can import external Architecture descriptions
into System Composer. You can setup a profile with Stereotypes ahead of time to capture the
Architecture properties represented in such descriptions. Subsequently, you can use MATLAB
programming to create and customize the various Architectural elements through the set of
programmatic APIs.

 Compose Architecture Visually

1-13

See Also

More About
• “Decompose and Reuse Components” on page 1-15
• “Define Interfaces” on page 3-2
• “Assign Interfaces to Ports” on page 3-5

1 Architecture Model Editing

1-14

Decompose and Reuse Components
Every component in an architecture model can have its own design, or even several design
alternatives. These designs can be architectures modeled in System Composer or behaviors modeled
in Simulink®. Engineering systems often use the same component design in multiple places. A
common component, such as power switch, can be part of all electrical components. You can reuse a
component in System Composer within the same model as well as across architecture models.

Decompose a Component
A component can have its own architecture. Double-click a component to view or edit its architecture.
When you view the component at this level, its ports appear as architecture ports. You can use the

navigation arrows on the toolbar to move through the hierarchy. Use the Model
Browser to view component hierarchy.

You can add components, ports, and connections at this level to define the architecture.

You can also make a new component from a group of components.

1 Select the components. Either click and drag a rectangle, or select multiple components by
holding the Shift button down.

 Decompose and Reuse Components

1-15

2 Create a component from the selected elements using Architecture > Create Component

As a result, the new component has the selected components, their ports, and connections as part of
its architecture. Any unconnected ports and connections to components outside of the selection
become ports on the new component.

Any component that has its own architecture displays a preview of its contents.

Create a Reference Architecture
Some projects use the same, detailed component in multiple places, and require the design of such a
component to be tightly managed. You can create a reference architecture to reuse the architectural
definition of a component in the same architecture model or across several architecture models.
Create such a reference architecture using this procedure:

1 Right-click the component and select Save as Architecture Model.

1 Architecture Model Editing

1-16

2 Provide a name for the model. By default, the reference architecture is saved in the same folder
as the architecture model. Browse for or type the full path if you want to save it in a different
folder.

System Composer creates an architecture model with the provided name, and links the component to
the new model. The linked model is indicated in the name of the component between the <> signs.

 Decompose and Reuse Components

1-17

All architecture models can reference this new architecture model through linked components.

Use a Reference Architecture
You can use a reference architecture, saved in a separate file, by linking to it from a component.
Right-click the component and select Link to Model. You can also use the Create Reference option
in the element palette directly to create a component that uses a reference architecture.

To link a selected component to an existing architecture model, right-click the component and select
Link to Model.

1 Architecture Model Editing

1-18

Provide the full path to the reference architecture. If the linked component has its own ports and
components, this content is deleted during linking and replaced by that of the reference architecture.
The ports of the linked component become the architecture ports in the reference architecture.

Any change made in a reference architecture is immediately reflected in the models that link to it. If
you move or rename the reference architecture, the link becomes invalid and the linked component
displays an error. Link the component to a valid reference architecture.

Inline a Reference Architecture
in some cases, you have to deviate from the reference architecture for a single component. For
example, a comprehensive sensor model, referenced from a local component, may include too many
features for the motion control architecture at hand and require simplification for that architecture
only. In this case, you can inline the reference architecture to make local changes possible. Right-
click a linked component and select Inline Model.

 Decompose and Reuse Components

1-19

This operation provides two options:

• Inline only interfaces — The ports and designated interfaces of the reference architecture are
reflected on the component, but the composition is blank.

• Inline both interfaces and contents — Ports, interfaces, and subcomponents of the reference
architecture are copied to the component.

Once the reference architecture is inlined, you can start making changes without affecting other
architectures. However, you cannot propagate local changes to the reference architecture. If you link
to the reference architecture again, local changes are lost.

Create Variants
A component can have multiple design alternatives, or variants. You can model variations for any
component in a single architecture model. You can define a mix of behaviors (defined in a Simulink
model) and architectures (defined in a System Composer architecture model) as variant choices. For
example, a component may have two variant options that represent two alternate structural
decompositions.

Add variation to a component. Right-click the component and select Add Variant Choice.

1 Architecture Model Editing

1-20

The badge on the component indicates that it is a variant, and a variant choice is added to the
existing composition. Double-click the component to see variant choices.

 Decompose and Reuse Components

1-21

You can add more variant choices to a variant component using the Add Variant Choice option.

Open and edit the variant by right-clicking and selecting Variant > Open > <variant_name> from
the component context menu.

You can also designate a component as a variant upon creation using the object in the toolstrip.
This creates two variant choices by default.

Activate a specific variant choice using the context menu of the block. Right-click and select Variant
> Label Mode Active Choice > <variant_name>. The active choice is displayed in the header of
the block.

1 Architecture Model Editing

1-22

See Also

More About
• “Create a Simulink Behavior Model” on page 5-2
• “Link to an Existing Simulink Behavior Model” on page 5-4
• “Create Spotlight Views” on page 1-24

 Decompose and Reuse Components

1-23

Create Spotlight Views
Any system being designed for a real application is usually very large and complex. It typically
consists of many complex functions working together to fulfill the system requirements. In the
process of designing and analyzing such architectures, you must understand existing components and
what needs to be added. A spotlight view is a simplified view of a model that captures the upstream
and downstream dependencies of a specific component of interest.

To create a spotlight from the composition, select the component of interest in the canvas, right-click
and select Create Spotlight from Component either from the Architecture menu or the context
menu.

1 Architecture Model Editing

1-24

The spotlight view launches and shows all model elements to which the component connects in a
transparent hierarchy. The spotlight diagram is laid out automatically and cannot be edited.

While in the spotlight view, you can put another component in the spotlight. Select the component

and click .

 Create Spotlight Views

1-25

You can make the hierarchy and connectivity of a component visible at all times during model
development by opening the spotlight view in a separate window. Show the spotlight view in a
dedicated window by first selecting Open in New Window in the component context menu and then
creating the Spotlight view. Spotlight views are dynamic. Any change in the composition refreshes
any open spotlight views. Spotlight views are transient—they are not saved with the model.

You can return to the architecture model view by clicking the icon. To view the architecture at
the level of a particular component, select the component and click the icon.

See Also

More About
• “Compose Architecture Visually” on page 1-2
• “Decompose and Reuse Components” on page 1-15

1 Architecture Model Editing

1-26

Build an Architecture Model from Command Line
This example shows how to build an architecture model using the System Composer API.

Prepare Workspace

systemcomposer.profile.Profile.closeAll;

Build a Model

Add Components, Ports, and Connections

model = systemcomposer.createModel('mobileRobotAPI');
arch = model.Architecture;
components = addComponent(arch,{'Sensor','Planning','Motion'});
sensorPorts = addPort(components(1).Architecture,{'MotionData','SensorData'},{'in','out'});
planningPorts = addPort(components(2).Architecture,{'Command','SensorData','MotionCommand'},{'in','in','out'});
motionPorts = addPort(components(3).Architecture,{'MotionCommand','MotionData'},{'in','out'});
c_sensorData = connect(arch,components(1),components(2));
c_motionData = connect(arch,components(3),components(1));
c_motionCommand = connect(arch,components(2),components(3));

Add and Connect an Architecture Port

Add a port on the architecture. This is an architecture port.

archPort = addPort(arch,'Command','in');

The connect command requires a component port as argument. Obtain the component port and
connect:

compPort = getPort(components(2),'Command');
c_Command = connect(archPort,compPort);

Save the model.

save(model)

Open the model

open_system(gcs);

Arrange the layout by pressıng Ctrl+Shift+A or using the following command.

Simulink.BlockDiagram.arrangeSystem('mobileRobotAPI');

 Build an Architecture Model from Command Line

1-27

Create and Apply Profile and Stereotypes

Profiles are xml files that can be applied to any model.

Create a Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile('GeneralProfile');

Create a stereotype that applies to all element types:

elemSType = addStereotype(profile,'projectElement');

Create stereotypes for different types of components. These types are dictated by design needs and
are at the discretion of the user:

pCompSType = addStereotype(profile,'physicalComponent','AppliesTo','Component');
sCompSType = addStereotype(profile,'softwareComponent','AppliesTo','Component');

Create a stereotype for connections:

sConnSType = addStereotype(profile,'standardConn','AppliesTo','Connector');

Add Properties

Add properties to stereotypes. You can use properties to capture metadata for model elements and
analyze non-functional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID','Type','uint8');
addProperty(elemSType,'Description','Type','string');
addProperty(pCompSType,'Cost','Type','double','Units','USD');
addProperty(pCompSType,'Weight','Type','double','Units','g');
addProperty(sCompSType,'develCost','Type','double','Units','USD');
addProperty(sCompSType,'develTime','Type','double','Units','hour');
addProperty(sConnSType,'unitCost','Type','double','Units','USD');
addProperty(sConnSType,'unitWeight','Type','double','Units','g');
addProperty(sConnSType,'length','Type','double','Units','m');

1 Architecture Model Editing

1-28

Apply Profile to Model

Apply profile to the model:

applyProfile(model,'GeneralProfile');

Apply stereotypes to components. Some components are physical components, others are software
components.

applyStereotype(components(2),'GeneralProfile.softwareComponent')
applyStereotype(components(1),'GeneralProfile.physicalComponent')
applyStereotype(components(3),'GeneralProfile.physicalComponent')

Apply the connector stereotype to all connections:

batchApplyStereotype(arch,'Connector','GeneralProfile.standardConn');

Apply the general element stereotype to all connectors and ports:

batchApplyStereotype(arch,'Component','GeneralProfile.projectElement');
batchApplyStereotype(arch,'Connector','GeneralProfile.projectElement');

Set properties for each component:

setProperty(components(1),'GeneralProfile.projectElement.ID','001');
setProperty(components(1),'GeneralProfile.projectElement.Description','''Central unit for all sensors''');
setProperty(components(1),'GeneralProfile.physicalComponent.Cost','200');
setProperty(components(1),'GeneralProfile.physicalComponent.Weight','450');
setProperty(components(2),'GeneralProfile.projectElement.ID','002');
setProperty(components(2),'GeneralProfile.projectElement.Description','''Planning computer''');
setProperty(components(2),'GeneralProfile.softwareComponent.develCost','20000');
setProperty(components(2),'GeneralProfile.softwareComponent.develTime','300');
setProperty(components(3),'GeneralProfile.projectElement.ID','003');
setProperty(components(3),'GeneralProfile.projectElement.Description','''Motor and motor controller''');
setProperty(components(3),'GeneralProfile.physicalComponent.Cost','4500');
setProperty(components(3),'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical:

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Create an Interface

Create a data dictionary and add an interface:

dictionary = systemcomposer.createDictionary('SensorInterfaces.sldd');
interface = addInterface(dictionary,'GPSInterface');

Link the interface to the model:

linkDictionary(model,'SensorInterfaces.sldd');

Identify the interface in the dictionary:

 Build an Architecture Model from Command Line

1-29

interface_GPS = getInterface(model.InterfaceDictionary,'GPSInterface');

Set the interface for the port:

setInterface(sensorPorts(2),interface_GPS);

Save Data Dictionary

Save the changes to the data dictionary.

dictionary.save();

Clean Up

Uncomment the following code and run to clean up the artifacts created by this example:

% bdclose('mobileRobotAPI');
% systemcomposer.profile.Profile.closeAll;
% delete('SensorInterfaces.sldd');

1 Architecture Model Editing

1-30

Create Architecture Views Interactively
Typically, the structural hierarchy of a system differs from the hierarchy of the functional
requirements. With architecture views, you can sketch the system based on different hierarchies. For
example, you can author a system using the requirements. This allows you to better understand what
components you need to satisfy your requirements while not necessarily focusing on the structure.

You can create an architecture view interactively. This example uses the architecture model for an
unmanned aerial vehicle (UAV), scExampleSmallUAV, to create filtered and free form views. The
view created shows the components having an interface for the light commands.

Create Filtered Views
To create a filtered view:

1 In the MATLAB command window, enter scExampleSmallUAV. The architecture model opens in
the Simulink Editor.

2 In the Views section, click Architecture Views to open the Architecture Views Editor.

3 Click New View to open a Create View dialog box.
4 In the Name box, enter a name for this view. For example, light_command_view.

 Create Architecture Views Interactively

1-31

5 Select Create and observe that a new view is created.

6 In the View Filter pane, select Add Default to add a new form-based criteria to the filter.
7 From the Select drop-down list, select Components with a port which have an

interface. From the Where drop-down list, select Name, and in the text box, enter the name of
an interface in the architecture model. For example, enter lightCmd.

1 Architecture Model Editing

1-32

8 Click Apply Query. The dialog box closes and an architecture view is created using the query
from the Filter box. The view is filtered to select all the components for which the lightCmd
interface is applied.

Create Freeform Views
You can also create a freeform custom view without using a filter.

1 Click New View.
2 In the Name box, enter a name for this view. For example, use

light_command_view_freeform. From the drop-down menu, select Freeform View. Select
Create.

3 To add components to the view, drag and drop components from the Model Components. Drag
and drop Airframe, Fuselage, and Payload components to your model. Alternatively, you can use
the keyboard shortcut Ctrl+I to add component instantiations to your view.

 Create Architecture Views Interactively

1-33

You can use the keyboard shortcut Delete to delete components from the view.
4 Observe that the free form view is created.

5 To group components, select (press Shift and click) the Airframe and Payload components and
then the Group.

1 Architecture Model Editing

1-34

To ungroup components, select the components and click Ungroup.
6 Switch between the light_command_view_freeform and light_command_view by selecting

the desired view from the View Browser.

 Create Architecture Views Interactively

1-35

Creating Architectural Views Programmatically
You can create an architecture view programmatically. This section constrains two examples for
creating views programmatically from the MATLAB script createArchitectureViews.m.

1 Import the package where the queries are so you don't have to always use
systemcomposer.query.

import systemcomposer.query.*;
2 Open the Simulink project file.

scKeylessEntrySystem
3 Load the example model into Simulink.

zcModel = systemcomposer.loadModel('KeylessEntryArchitecture');

Example 1: Hardware Component Review Status
Create a filtered view that selects all of the hardware components in the architecture model and
groups them using the ReviewStatus property.

1 Construct the query to select all of the hardware components.
hwCompQuery = HasStereotype(IsStereotypeDerivedFrom("AutoProfile.HardwareComponent"))

hwCompQuery =

 HasStereotype with properties:

 AllowedParentConstraints: {[1×1 meta.class]}
 SubConstraint: [1×1 systemcomposer.query.IsStereotypeDerivedFrom]
 SkipValidation: 0

2 Use the query to create a view.
zcModel.createViewArchitecture("Hardware Component Review Status",...
 hwCompQuery,... % The query to use for the selection
 "AutoProfile.BaseComponent.ReviewStatus",... % The stereotype property to qualify by
 "IncludeReferenceModels",true,... % Include components in referenced models
 "Color","purple");

zcModel.openViews;

1 Architecture Model Editing

1-36

Example 2: FOB Locator System Supplier View
This example shows hot to create a freeform view that manually pulls the components from the FOB
Locator system and then groups them using existing and new view components for the suppliers.

1 Create a view architecture.
fobSupplierView = zcModel.createViewArchitecture("FOB Locator System Supplier Breakdown",...
 "Color","lightblue");

2 Create a new view component for supplier D and add the FOB Locator module to it.
supplierD = fobSupplierView.createViewComponent("Supplier D");
supplierD.Architecture.addComponent("KeylessEntryArchitecture/FOB Locator System/FOB Locator Module");

3 Create a new view component for supplier A.

supplierA = fobSupplierView.createViewComponent("Supplier A");
4 Add each of the FOB receivers to view component.

FOBLocatorSystem = zcModel.lookup("Path", "KeylessEntryArchitecture/FOB Locator System");
receiverCompPaths = zcModel.find(...
 contains(systemcomposer.query.Property("Name"),"Receiver"),... % Find all the components which contain the name "Receiver"
 FOBLocatorSystem.Architecture);

for i = 1:numel(receiverCompPaths)
 % Add each of the components to supplier A
 supplierA.Architecture.addComponent(receiverCompPaths{i});
end

 Creating Architectural Views Programmatically

1-37

5 Open the Views Editor.

zcModel.openViews;

6 Close the model.

zcModel.close('Force');

Finding Elements in a System Composer Model Using Queries
This example shows how to find components in a system composer model using queries.

1 Open the MATLAB script.

open('scExampleModelFind')

2 Review the 6 example queries.

1 Architecture Model Editing

1-38

Import and Export Architecture Models
To build a System Composer model, you can import information about components, ports, and
connections in a predefined format using MATLAB table objects. You can extend these tables and add
information like applied stereotypes, property values, linked model references, variant components,
interfaces, and requirement links.

Similarly, you can export information about components, hierarchy of components, ports on
components, connections between components, linked model references, variants, stereotypes on
elements, interfaces, and requirement links.

Define a Basic Architecture
The minimum required structure for a System Composer model consists of these sets of information:

• Components table
• Ports table
• Connections table

To import additional elements, you need to add columns to the tables and add specific values for
these elements.

Components Table

The information about components is passed as values in a MATLAB table against predefined column
names, where:

• Name is component name.
• ID is a user-defined ID used to map child components and add ports to components.
• ParentID is parent component ID.

For example, Component_1_1 and Component_1_2 are children of Component_1.

Name ID ParentID
root 0
Component_1 1 0
Component_1_1 2 1
Component_1_2 3 1
Component_2 4 0

Ports Table

The information about ports is passed as values in a MATLAB table against predefined column names,
where:

• Name is port name.
• Direction is an input or output port direction.
• ID is a user-defined port ID used to map ports to port connections.

 Import and Export Architecture Models

1-39

• CompID is the ID of the component to which the port is added. It is the component passed in the
components table.

Name Direction ID CompID
Port1 Output 1 1
Port2 Input 2 4
Port1_1 Output 3 2
Port1_2 Input 4 3

Connections Table

The information about connections is passed as values in a MATLAB table against predefined column
names, where:

• Name is connection name.
• ID is connection ID used to check that the connections are properly created during the import

process.
• SourcePortID is the ID of the source port.
• DestPortID is the ID of the destination port.

Name ID SourcePortID DestPortID
Conn1 1 1 2
Conn2 2 3 4

Import a Basic Architecture
Import the basic architecture from the tables created above into System Composer from the MATLAB
Command Window.

systemcomposer.importModel('importedModel',components,ports,connections)

The basic architecture model opens.

Tip The tables do not include information about the model's visual layout. You can arrange the
components manually or use Architecture > Arrange > Arrange Automatically.

Extend the Basic Architecture Import
You can import other model elements into the basic structure tables.

Import Interfaces and Map Ports to Interfaces

To define the interfaces, add interface names in the ports table to associate ports to corresponding
portInterfaces table. Create a table similar to components, ports, and connections.
Information like interface name, associated element name along with data type, dimensions, units,
complexity, and minimum and maximum values are passed to the importModel function in a table
format shown below.

1 Architecture Model Editing

1-40

Name Parent DataTyp
e

Dimensions Units Complexi
ty

Minimum Maximu
m

interface1
elem1 interfa

ce1
interfa
ce3

1 "" real "[]" "[]"

interface2 1 1 "" real "[]" "[]"
elem2 interfa

ce1
1 1 "" real "[]" "[]"

Note Anonymous interfaces cannot be the data type of elements.

To map the added interface to ports, add column InterfaceName in the ports table to specify the
name of interface to be linked. For example, interface1 is mapped to Port1 as shown below.

Name Direction ID CompID InterfaceName
Port1 Output 1 1 interface1
Port2 Input 2 4 interface2
Port1_1 Output 3 2 ""
Port1_2 Input 4 3 interface1

Import Variant Components

You can add variant components just like any other component in the components table, except you
specify the name of the active variant. Add choices as child components to the variant components.
Specify the variant choices as string values in the VariantControl column. You can enter
expressions in the VariantCondition column.

Next example shows how to add a variant component VarComp with choices Choice1 and Choice2
and set Choice2 as active choice.

Name ID ParentID Referenc
eModelN
ame

Compon
entType

ActiveCh
oice

VariantC
ontrol

VariantC
ondition

Stereoty
peName

root 0
Compone
nt1

C1 0

VarComp V2 0 Variant Choice2
Choice1 C6 V2 petrol
Choice2 C7 V2 diesel
Compone
nt3

C3 0

Compone
nt1_1

C4 C1

 Import and Export Architecture Models

1-41

Name ID ParentID Referenc
eModelN
ame

Compon
entType

ActiveCh
oice

VariantC
ontrol

VariantC
ondition

Stereoty
peName

Compone
nt1_2

C5 C1

Pass the modified components table along with the port and connections tables to the importModel
function.

Apply Stereotypes and Set Property Values on Imported Model

To apply stereotypes on components, ports, and connections, add a StereotypeNames column to the
components table. To set the properties for the stereotypes, add a column with a name defined using
the profile name, stereotype name, and property name. For example, name the column
UAVComponent_OnboardElement_Mass for a UAVComponent profile, a OnBoardElement
stereotype, and a Mass property.

You set the property values in the format value{units}. Units and values are populated from the
default values defined in the loaded profile file.

Name ID ParentID StereotypeNam
es

UAVComponent
_OnboardEleme
nt_Mass

AVCompone
nt_OnboardE
lement_Pow
er

root 0
Component_1 1 0 UAVComponent.O

nboardElement
0.93{kg} 0.65{mW}

Component_1_1 2 1
Component_1_2 3 1 UAVComponent.O

nboardElement
0.93{kg} ""

Component_2 4 0

Assign Requirement Links on Imported Model

To assign requirement links to the model, add a requirementLinks table with these required
columns:

• Label is the name of the requirement.
• SourceID is the architecture element to which the requirement is attached.
• DestinationType is how requirements are saved.
• DestinationID is where the requirement is located.
• Type is the requirement type.

Label SourceID DestinationTy
pe

DestinationID Type

rset#1 components:1 linktype_rmi
_slreq

C:\Temp
\rset.slreqx#1

Implement

1 Architecture Model Editing

1-42

Label SourceID DestinationTy
pe

DestinationID Type

rset#2 components:0 linktype_rmi
_slreq

C:\Temp
\rset.slreqx#2

Implement

rset#3 ports:1 linktype_rmi
_slreq

C:\Temp
\rset.slreqx#3

Implement

rset#4 ports:3 linktype_rmi
_slreq

C:\Temp
\rset.slreqx#4

Implement

Specify Multiple Elements on an Architecture Port

In the connections table, you can specify multiple signal interface elements as the source element
or destination element. Connections can be formed from a root architecture to a component port,
from a component port to a root architecture, or between two root architecture ports of the same
architecture.

The interface element mobile with nested element elem is the source element for the connection
between an architecture port and a component port. The nested element mobile.alt is the
destination element for the connection between an architecture port and a component port. The
interface element mobile and the nested element mobile.alt are source elements for the
connection between two architecture ports of the same architecture.

Name ID SourcePortI
D

DestPortID SourceElement DestinationElem
ent

RootToComp1 1 5 4 mobile.elem
RootToComp2 2 5 1 mobile.alt
Comp1ToRoot 3 2 6 interface
Comp2ToRoot 4 3 6 mobile.alt

 Import and Export Architecture Models

1-43

RootToRoot 5 5 6 mobile,mobile.
alt

Export an Architecture
To export a model, pass the model name and as an argument to the exportModel function. The
function returns a structure containing four tables components, ports, connections,
portInterfaces, and requirementLinks.

>> exportedSet = systemcomposer.exportModel(modelName)

You can export the set to MATLAB tables and then convert those tables to external file formats,
including Microsoft® Excel®, databases, or XMI.

See Also
systemcomposer.exportModel | systemcomposer.importModel

1 Architecture Model Editing

1-44

Display Component Hierarchy Using Hierarchy Views
This example shows how to use Hierarchy Views to visualize component hierarchy as a tree diagram
with component stereotypes, stereotype properties, and the reference type a component instantiates.

Any component diagram view can be optionally represented as a hierarchy diagram. The Hierarchy
View displays the components in a tree form. Hierarchy View shows the same set of components
visible in the component diagram view, and the components displayed in the view are selected and
filtered in the same way.

This example uses an architecture model representing a keyless entry system for a vehicle to show
the Hierarchy View. For more information about the keyless entry system, see “Modeling System
Architecture of Keyless Entry System” on page 6-30.

Switch Between Component Diagram and Hierarchy Diagram
1 To open the scKeylessEntrySystem project, use the command below.

scKeylessEntrySystem

2 To open the architecture views, on the Modeling tab, select Architecture Views.
3 From the View Browser, select Software Component Review to display the component

diagram.

4 On the Views tab, select Hierarchy diagram.

 Display Component Hierarchy Using Hierarchy Views

1-45

5 Observe the Hierarchy View that corresponds to the same set of components.

The single root of the hierarchy diagrams show a single root, which is the view specification itself.
The root corresponds to the containing system box shown in the component diagram. The
connections in the hierarchy diagram originate from the child components and end with a diamond
symbol at the parent component.

1 Architecture Model Editing

1-46

Requirements

2

Manage Requirements
Manage requirements and architecture model together in the Requirements perspective from
Simulink Requirements™. Select Apps > Requirements Manager.

When you click a component in the Requirements perspective, linked requirements are highlighted.
Conversely, when you click a requirement, the linked components are shown.

2 Requirements

2-2

To directly create a link, drag a requirement onto a component.

 Manage Requirements

2-3

You can close the annotation that shows the link as necessary. This does not delete the link.

You can exit the Requirements perspective by clicking the perspectives menu on the lower-right
corner of the architecture model and selecting Exit perspective.

2 Requirements

2-4

For more information on managing requirements, see “Manage Navigation Backlinks in External
Requirements Documents” (Simulink Requirements).

See Also

More About
• “Link Blocks and Requirements” (Simulink Requirements)

 Manage Requirements

2-5

Interface Management

• “Define Interfaces” on page 3-2
• “Assign Interfaces to Ports” on page 3-5
• “Save, Link, and Delete Interfaces” on page 3-8
• “Interface Adapter” on page 3-14

3

Define Interfaces
A system engineering solution includes a formal definition of the interfaces between components. A
connection shows that two components have an output-to-input relationship; an interface defines the
type, dimensions, units, and structure of the data. You can define interfaces using the Interface
Editor.

To show the Interface Editor, in the Design section, on the Modeling tab, select Interface Editor.
The Interface Editor will open along the bottom pane.

Create Interface

To add a new interface definition, click the icon. Name the interface.

3 Interface Management

3-2

To add an element to the interface, click the icon. Interface and element names must be valid
variable names.

You can delete interfaces and elements in the Interface Editor using the button.

You can view and edit the properties of an element in the Property Inspector. Right-click the interface
element and select Inspect Properties.

 Define Interfaces

3-3

A hierarchical interface contains another interface. Create a hierarchical interface by assigning an
interface as the type of an interface element.

For example, let coordinates be an interface that consists of x, y, and z coordinates. GPS data
includes location information and a timestamp. If the location data is in the same format as the
coordinates interface, you can set its type to coordinates. Right-click location and select Set
'Type' > coordinates. The available interface options include all interfaces in the model, except the
parent of the element.

The defined interfaces become part of the model data dictionary.

See Also

More About
• “Assign Interfaces to Ports” on page 3-5
• “Save, Link, and Delete Interfaces” on page 3-8

3 Interface Management

3-4

Assign Interfaces to Ports
Associate a port with an interface using the Property Inspector. To open the Property Inspector, locate
it in the toolstrip in the Design section drop down. To show the SensorData port properties,
highlight the port in the model. Expand Interface, and select the sensordata interface in the Name
drop-down menu.

You can select an interface in the model data dictionary (see “Define Interfaces” on page 3-2), or
create an anonymous interface — an interface of unstructured data whose properties are valid for
that port only. An anonymous interface does not have a structure, but does have prescribed
properties such as Type and Dimensions. You can edit the properties of the anonymous interface in
the Property Inspector.

Multiple ports, whether they are connected or not, can use the same interface definition. When you
assign an interface to a port, it is automatically propagated to the connected ports, provided they do
not already have assignments. To simplify batch assignments, select multiple ports, right-click the
interface, and select Assign to Selected Port(s).

Highlight the ports that use an interface definition by clicking the interface name in the Interface
Editor.

 Assign Interfaces to Ports

3-5

A source port and the destination port to which it connects may be defined by different interfaces.
Such a connection can represent an intermediate point in design, where components from different

3 Interface Management

3-6

sources come together. To connect components with different interfaces, use an Adapter block from
the component palette.

Change the number of input ports on an Adapter block the same way you add and remove component
ports. For more information, see “Ports” on page 1-8.

See Also

More About
• “Define Interfaces” on page 3-2
• “Save, Link, and Delete Interfaces” on page 3-8
• “Interface Adapter” on page 3-14

 Assign Interfaces to Ports

3-7

Save, Link, and Delete Interfaces
In this section...
“Store Interfaces in a Data Dictionary” on page 3-8
“Add Referenced Data Dictionaries” on page 3-9
“Use Referenced Data Dictionaries for Projects with Multiple Models” on page 3-11

Store Interfaces in a Data Dictionary
Engineering systems often share interface definitions across multiple components or subsystems.

Interfaces in System Composer can be stored either locally in a model or in a data dictionary,
depending on the maturity of your system. By default, interfaces are stored within the architecture
model and are not visible outside the model. If you are in the initial stages of building a system
model, store interfaces locally to limit the number of files that need to be managed. However, if your
model is mature to the point of leveraging componentization workflows like reference architectures
and behaviors, storing interfaces in a data dictionary gives you the ability to share interface
definitions across the model hierarchy.

Use the menu to save an interface to a new or existing data dictionary. Create a new data
dictionary by selecting Save to new dictionary. Provide a dictionary name.

You can also add the interface definitions in the model to an existing data dictionary by selecting
Link existing dictionary.

Use the button to import interface definitions from a Simulink bus object, either from a MAT-file or
the workspace.

Delete an interface from a dictionary using the button. If the interface is already being used by
ports in a currently open model, the software returns a warning message. The interface is then
removed from any ports in the open model that are associated with the interface. Note that if an
interface is deleted from a dictionary, upon opening another model that shares the dictionary, a
warning will be presented on startup if the deleted interface is used by ports in that model. The
Diagnostic Viewer offers an option to remove the deleted interface from all ports that are still using
it. You can also select ports individually and delete their missing interfaces.

3 Interface Management

3-8

Note that a System Composer model and a data dictionary are separate artifacts. Thus, even when
the data dictionary is linked to the model, changes to the data dictionary (a .sldd file) must be saved
separately from changes to the model (a .slx file). To save changes to a linked data dictionary, use
the button and select Save dictionary. Once a data dictionary is saved, other models can use
its interface definitions by linking to the data dictionary, thus allowing multiple models to share the
same interface definitions.

Add Referenced Data Dictionaries
A data dictionary can reference one or more other data dictionaries. The interface definitions in the
referenced dictionaries are visible in the parent dictionary and can be used by a model that is linked
to the parent dictionary. To add a dictionary reference, open the Model Explorer by clicking on the

 button, or by selecting Model Explorer from the tab in the Design section of the Modeling tab.

 Save, Link, and Delete Interfaces

3-9

In the right side of the Model Explorer window, click Add, then select the file name of the data
dictionary to add as a referenced dictionary. To remove a dictionary reference, highlight the
referenced dictionary, then click Remove.

The Interface Editor shows all interfaces accessible to a model, grouped based on their data
dictionary files. In the following example, myDictionary.sldd is the data dictionary linked to the
model, and otherDictionary.sldd is a referenced dictionary.

The model can use any of the interfaces listed. However, you cannot modify the contents of the
referenced dictionaries from the model.

Note that referenced dictionaries can reference other data dictionaries. A model that links to a
dictionary has access to all interface definitions in referenced dictionaries, including indirectly
referenced dictionaries.

3 Interface Management

3-10

Referenced dictionaries may be useful when multiple models need to share some, but not all,
interface definitions. For instance, Model A could link to Dictionary A, which contains interface
definitions used only by Model A, and Model B could similarly link to Dictionary B. Both Dictionary A
and Dictionary B could then reference Dictionary C, which contains interface definitions shared by
both models, for example, to allow communication between the models.

Use Referenced Data Dictionaries for Projects with Multiple Models
A project may contain multiple models, and it may be useful for the models to share interface
definitions that are relevant to data flows and other communications between models. At the same
time, each model may have interface definitions that are relevant only to its internal operations. For
example, different components of a system may be represented by different models, with different
teams or different suppliers working on each model, with a system integrator working on the "top"
model that incorporates the various components. Referenced data dictionaries provide a way for
models to share some but not all interface definitions.

In such a multiple-team project, set up a "shared artifacts" data dictionary to store interface
definitions that will be shared by different teams, then set up a data dictionary for each model within
the project to store its own interface definitions. Each data dictionary can then add the shared data
dictionary as a referenced data dictionary. Alternatively, if a model does not need its own interface
definitions, that model can link directly to the shared data dictionary.

The above diagram depicts a project with three models. The model mSystem.slx represents a
system integration model, and mSupplierA.slx and mSuppierB.slx represent supplier models.
The data dictionary dShared.sldd contains interface definitions shared by all the models. The
system integration model is linked to the data dictionary dSystem.sldd, and the Supplier A model is
linked to the data dictionary dSupplierA.sldd; each data dictionary contains interface definitions
relevant to the corresponding model's internal workflow. The data dictionaries dSystem.sldd and
dSupplierA.sldd both reference the shared dictionary dShared.sldd. The Supplier B model, by
contrast, is linked directly to the shared dictionary dShared.sldd. In this way, all three models have
access to the interface definitions in dShared.sldd.

The following diagrams show the system integration model mSystem, along with the Interface Editor.
Interface definitions contained in the referenced dictionary dShared are associated with the ports

 Save, Link, and Delete Interfaces

3-11

used to communicate between the models mSupplierA and mSupplierB and the rest of the system
integration model.

The following diagrams show the supplier model mSupplierA, along with the Interface Editor.
Interface definitions contained in the referenced dictionary dShared are associated with the ports
used to communicate externally, while interface definitions in the private dictionary dSupplierA are
associated with ports whose use is internal to the mSupplierA model.

3 Interface Management

3-12

See Also

More About
• “Define Interfaces” on page 3-2
• “Assign Interfaces to Ports” on page 3-5

 Save, Link, and Delete Interfaces

3-13

Interface Adapter
Use the Interface Adapter to map interface elements between two ports. You can also use the
Interface Adapter to apply an interface conversion to use unit delays to break algebraic loops, or to
insert a rate transition for different sample time rates. Launch the Interface Adapter from an
Adapter block on the connection between the ports.

Map Similar Interfaces
When two connected components with Simulink behaviors have the same number of signals with
different names, use an Adapter block and the Interface Adapter to define the port connections.

1 Add an Adapter block to your model on the connection between the two components.
2 Double-click the block to open the Interface Adapter dialog box.
3 In the Select input box, select an interface element. In the Select output box, select an

interface element.
4 Click the Map button.

Use Unit Delay to Break Algebraic Loop
When connecting two components with port connections in both directions, an algebraic loop can
occur. To break the algebraic loop, use an Adapter block to insert a unit delay between the
components.

1 Add an Adapter block to your model on the connection between the two components.
2 Double-click the block to open the Interface Adapter dialog box.
3 From the Apply interface conversion list, select UnitDelay.

3 Interface Management

3-14

Use Rate Transition Between Simulink Behaviors
When connecting two Reference Components, the Simulink models they reference can have different
sample time rates. For compatibility, use an Adapter block to insert a rate transition between the
components.

1 Add an Adapter block to your model on the connection between the two components.
2 Double-click the block to open the Interface Adapter dialog box.
3 From the Apply interface conversion list, select RateTransition.

See Also
Blocks
Adapter

More About
• “Define Interfaces” on page 3-2
• “Save Simulink.Bus Objects”
• “Assign Interfaces to Ports” on page 3-5

 Interface Adapter

3-15

Define Architectural Properties

• “Define Profiles and Stereotypes” on page 4-2
• “Use Stereotypes and Profiles” on page 4-9

4

Define Profiles and Stereotypes
To verify structural and functional requirements, you must capture nonfunctional properties on
elements in an architecture model. For example, if there is a limit on the total power consumption of
a system, the model must capture the power rating of each electrical component. This requires
extending built-in model element types with properties corresponding to requirements, in this case,
an electrical component type as an extension of components. You can introduce a self-consistent
domain of model element types into System Composer using a group of property sets, or stereotypes,
called a profile.

System Composer provides these architectural model elements to describe an architecture model:

• Component
• Port
• Connection

You can view the properties of each element in the architecture model using the Property Inspector.
Open Property Inspector using View > Property Inspector.

You author profiles using the Profile Editor. Profiles are saved separately from the architecture model
and are available to all architecture models.

When you create a profile, you define:

• Stereotypes — Customize built-in model element types
• Property sets — Add analysis properties to an architecture model element
• Data types, dimensions, etc — Define property values

You can define stereotypes to extend built-in elements and capture additional data about an element.
Element stereotypes define the class of the elements to which they apply. For example, a
MechanicalComponent stereotype with properties such as Weight and Volume applies only to
components.

A stereotype does not have to define a class. For example, a ProjectItem stereotype can add
generic properties such as catalog number or unit cost, a BorrowedItem stereotype can add
properties such as BorrowedSource and ReturnDeadline. A model element can have multiple
stereotypes.

Stereotypes can extend other stereotypes to include their properties. For example, a UserInterface
stereotype can be an extension of a SoftwareComponent stereotype, and add a property called
ScreenResolution.

You can collect stereotypes in profiles.

Create a Profile and Add Stereotypes
Create a profile to define a set of component, port, and connection types to be used in an architecture
model. For example, a profile for an electromechanical system, such as a robot, could consist of these
types:

• Component types:

4 Define Architectural Properties

4-2

• Electrical component
• Mechanical component
• Software component

• Connection types:

• Analog signal connection
• Data connection

• Port types

• Data port

Define a profile using the Profile Editor. In any architecture model, select Architecture > Profile >
Profile Editor. Click New Profile. Select new profile to start editing.

Name the profile and provide a description. Add stereotypes by clicking New Stereotype. You can

delete stereotypes and profiles by clicking in their respective menus.

Save the profile. The file name is the same as the profile name.

Add Properties with Stereotypes
Select a stereotype in a profile to define it:

• Name — The name of the component type, for example, ElectricalComponent.

 Define Profiles and Stereotypes

4-3

• Applies to — The model element type to which the stereotype applies. This field can be an
architecture, component, port, connector, or interface. You can apply this stereotype only to a
model element of this type.

• Icon — Icon to be shown on the model element.
• Base stereotype — Other stereotype on which this stereotype is based. This can be empty.
• Abstract stereotype — A stereotype that is not intended to be applied directly to a model

element. You can use abstract stereotypes only as the base stereotype for other stereotypes.

Add properties to a stereotype using . Define these fields for each property:

• Property name — Valid variable name
• Type — Numerical, string, or enumeration data type
• Unit — Value units as a string
• Default — Default value

Add, delete, and reorder properties using the property toolstrip:

You can create a stereotype that applies all model element types by setting the Applies to field to
<nothing>. With these stereotypes, you can add properties to elements regardless of whether they
are components, ports, connectors, or architectures.

4 Define Architectural Properties

4-4

Default Stereotypes
Each profile can have a set of default stereotypes. Use default stereotypes when each new element of
a certain type must assume the same stereotype. System Composer applies a default stereotype to
the root architecture when you import the profile. You can set this default in the Profile Editor using
the Stereotype applied to root on import field.

 Define Profiles and Stereotypes

4-5

This default stereotype is for the top-level architecture. If a model imports multiple profiles, the
default component stereotype for all profiles apply to the architecture.

Each component stereotype can also have defaults for the components, ports, and connections added
to its architecture. For example, if you want all new connections in an electrical component to be
analog connections, set AnalogConnection as a default stereotype for the ElectricalComponent
stereotype.

After you import the profile into a model, all new connections assume the AnalogConnection
stereotype.

Stereotype-Based Styling
Profiles and stereotypes are used to apply custom metadata on the architecture model elements.
Element styling is an additional visual cue that indicates applied stereotypes

You can use provided icons for the component stereotypes or use you own custom icon images.
Custom icons support .png, .jpeg, or .svn image files of size 16-by-16 pixels. The custom icons are
displayed as badges on the components for which the stereotypes are applied.

4 Define Architectural Properties

4-6

You can associate a color with component stereotypes. Element styling is an additional visual cue that
indicates applied stereotypes.

Use a preconfigured set of color options for component stereotypes to style the architecture
component headers. You can use a preconfigured set of color options for component stereotypes to
style the architecture component headers. Below is an example that displays the applied component
stereotypes with icons and color. See “Use Stereotypes and Profiles” on page 4-9 to learn how to
use stereotypes in your model.

Similarly, you can style architecture connectors using the stereotype settings. You can style
connectors by using connector, port, or port interface stereotypes. Customize styling provides various
color and line style choices. Connector styles are also reflected in architecture and spotlight views.

 Define Profiles and Stereotypes

4-7

See Also
“Use Stereotypes and Profiles” on page 4-9

4 Define Architectural Properties

4-8

Use Stereotypes and Profiles
Use profiles to add properties to components, ports, and connectors. Import an existing profile, apply
stereotypes, and add property values. To create a profile, see “Define Profiles and Stereotypes” on
page 4-2.

Apply a Stereotype
The Profile Editor is independent from the model that opens it, that is, you must explicitly import a
new profile into a model. On the Model tab and in the Profiles section, select Manage and then from

the drop-down, select Import . Select the profile to import. An architecture model can use
multiple profiles at once.

Once the profile is available in the model, open the Property Inspector. On the Modeling tab and in
the Design section, select Property Inspector. Select a model element.

In the Stereotype field, use the drop-down to select the stereotype. Only the stereotypes that apply
to this element type (for this example, a port) are available for selection. If no stereotype exists, you
can use the <new/edit> option to open the profile editor and create one.

 Use Stereotypes and Profiles

4-9

When you apply a stereotype to an element, a new set of properties appears in the Property Inspector
under the name of the stereotype. Expand this set to edit the properties.

You can set multiple stereotypes for each element.

4 Define Architectural Properties

4-10

You can also apply component and connector stereotypes to all applicable elements at the same level.

On the Modeling tab and in the Profiles section, select Apply Stereotypes. In the Apply
Stereotypes dialog box and from the Apply to list, select All elements, Components, Ports, or
Connectors. From the in list, select Selection, This layer, or Entire model.

Remove a Stereotype
If a stereotype is no longer required for an element, remove it using the Property Inspector. Click
Select next to the stereotype and choose Remove.

 Use Stereotypes and Profiles

4-11

Extend a Stereotype
You can extend a stereotype by creating a new one based on the existing one. This allows you to
control properties in a structural manner. For example, all components in a project may have a part
number, but only electrical components have a power rating, and only electronic components, which
is a subset of electrical components, have manufacturer information. You can use an abstract
stereotype to serve solely as a base for other stereotypes and not as a stereotype for any architecture
model elements.

For example, create a new stereotype called ElectronicComponent in the Profile Editor. Select its
base stereotype as FunctionalArchitecture.ElectricalComponent. Define properties you are
adding to those of the base stereotype. Check Show inherited properties at the bottom of the
property list to show the properties of the base stereotype. You can edit only the properties of the
selected stereotype, not the base stereotype.

4 Define Architectural Properties

4-12

When you apply the new stereotype, it carries its defined properties in addition to those of its base
stereotype.

 Use Stereotypes and Profiles

4-13

See Also

More About
• “Define Profiles and Stereotypes” on page 4-2
• “Analyze Architecture” on page 6-9

4 Define Architectural Properties

4-14

Use Simulink Models with System
Composer

• “Implement Components in Simulink” on page 5-2
• “Extract Architecture from Simulink Model” on page 5-5

5

Implement Components in Simulink
System design and architecture definition can involve a behavior definition for some components,
such as the algorithm for a data processing component. Components in System Composer
architecture models can define behavior using Simulink models by linking components to Simulink
models.

Create a Simulink Behavior Model
When a component does not require further decomposition from an architecture standpoint, you can
design and define its behavior in Simulink.

1 Right-click the component and select Create Simulink Behavior.

2 Provide a model name. The default name is the name of the component.

• A new Simulink model with the provided name is created. The root level ports of the Simulink
model reflect the ports of the component.

• The component in the architecture model is linked to the Simulink model. The Simulink icon on
the component indicates this is a Simulink link.

5 Use Simulink Models with System Composer

5-2

You can continue with providing specific dynamics and algorithms in the referenced Simulink model.
Adding root-level ports in the Simulink model creates additional ports on the System Composer
Reference Component block.

You can access and edit a referenced Simulink model by double-clicking the component in the
architecture model. When you save the architecture model, all unsaved Simulink behavior models it
references must also be saved, and all linked components updated.

 Implement Components in Simulink

5-3

Link to an Existing Simulink Behavior Model
You can link to an existing Simulink behavior model from a System Composer component, provided
that the component is not already linked to a reference architecture. Right-click the component and
select Link to Model. Type in or browse for the name of a Simulink model.

Any subcomponents and ports that are present in the components get deleted when the component
links to a Simulink model.

You can link protected Simulink models (.slxp) to create component behaviors. You can also convert
an already linked Simulink behavior model to a protected model, and the change is reflected after
refreshing the model.

See Also

More About
• “Decompose and Reuse Components” on page 1-15
• “Extract Architecture from Simulink Model” on page 5-5

5 Use Simulink Models with System Composer

5-4

Extract Architecture from Simulink Model
You can use System Composer architecture editing and analysis capabilities on Simulink models. To
do so, extract the architecture from a Simulink model. Model and Subsystem blocks, as well as all
ports in a Simulink model represent architectural constructs, while all other blocks represent some
kind of dynamic or algorithmic behavior. In the architecture model that you obtain from a Simulink
model, you can choose to represent architectural constructs or link to behavior models.

1 Open an example model.

openExample('ReferenceFilesForCollaborationExample')
2 On the Simulation tab, click the Save arrow. From the Export Model To list, select

Architecture Model.

3 Provide a name and path for the architecture model.

 Extract Architecture from Simulink Model

5-5

4 Click Export. A System Composer Editor window opens with an architecture model
corresponding to the Simulink Model.

5 Use Simulink Models with System Composer

5-6

Each subsystem in the Simulink model corresponds to a component in the architecture model so that
the hierarchy in the architecture model reflects the hierarchy of the behavior model.

The requirements for subsystems and Model blocks in the Simulink model are preserved in the
architecture model.

Any Model block in the Simulink model that references another model corresponds to a component
that links to that same referenced model.

 Extract Architecture from Simulink Model

5-7

Buses at subsystem and Model block ports, as well as their dictionary links are preserved in the
architecture model.

You can use the exported model to add architecture-related information such as interface definitions,
nonfunctional properties for model elements and analyze the design.

See Also

More About
• “Implement Components in Simulink” on page 5-2
• “Decompose and Reuse Components” on page 1-15

5 Use Simulink Models with System Composer

5-8

Analyze Architecture Model

• “Create and Manage Allocations” on page 6-2
• “Allocate Architectures in a Tire Pressure Monitoring System” on page 6-5
• “Analyze Architecture” on page 6-9
• “Battery Sizing and Automotive Electrical System Analysis” on page 6-16
• “Modeling System Architecture of Small UAV” on page 6-18
• “Link and Trace Requirements” on page 6-24
• “Modeling System Architecture of Keyless Entry System” on page 6-30
• “Extract the Architecture of a Simulink Model Using System Composer” on page 6-31
• “Build an Architecture Model from Command Line” on page 6-39
• “Import and Export Architectures” on page 6-43
• “Import System Composer Architecture using Model Builder.” on page 6-45

6

Create and Manage Allocations
This example shows how to create and manage System Composer™ allocations. Use allocations to
establish a directed relationship from architecture elements (components, ports, and connectors) in
one model to architecture elements in another model. One common use case for allocations is to
establish relationships from software components to hardware components to indicate the
deployment strategy.

This example uses the Tire Pressure Monitoring System (TPMS) project. To open the project, use this
command:

scExampleTirePressureMonitorSystem

Create a New Allocation Set

You can create an allocation set using the Allocation Editor. An allocation set is a collection of
allocation relationships between two models, a source model, and a target model. The allocation set
is stored as an .mldatx file.

In this example, TPMS_FunctionalArchitecture.slx is the source model and the
TPMS_LogicalArchitecture.slx is the target model.

To create an allocation set for these models, use this command.

allocSet = systemcomposer.allocation.createAllocationSet(...
 'Functional2Logical', ...% Name of the allocation set
 'TPMS_FunctionalArchitecture', ... % Source model
 'TPMS_LogicalArchitecture' ... % Target model
);

To see the allocation set, open the Allocation Editor by using the following command.

systemcomposer.allocation.editor;

The Allocation Editor has three parts: the toolstrip, the browser pane, and the allocation matrix.

• Use the toolstrip to create and manage allocation sets. For instance, you can use the New
Allocation Set button to create a new allocation set between two models.

• Use the Allocation Set Browser pane to browse and open existing allocation sets.
• Use the allocation matrix to specify allocations between the source model elements in the first

column and target model elements in the first row. You can create allocations programmatically or
by double-clicking a cell in the matrix.

6 Analyze Architecture Model

6-2

Create Allocations between Two Models

This example shows how to programmatically create allocations between two models in the TPMS
project.

Get handles to the reporting functions in the functional architecture model.

functionalArch = systemcomposer.loadModel('TPMS_FunctionalArchitecture');
reportLevels = functionalArch.lookup('Path', 'TPMS_FunctionalArchitecture/Report Tire Pressure Levels');
reportLow = functionalArch.lookup('Path', 'TPMS_FunctionalArchitecture/Report Low Tire Pressure');

Get the handle to the TPMS reporting system component in the logical architecture model.

logicalArch = systemcomposer.loadModel('TPMS_LogicalArchitecture');
reportingSystem = logicalArch.lookup('Path', 'TPMS_LogicalArchitecture/TPMS Reporting System');

Create the allocations in the default scenario that is created.

defaultScenario = allocSet.getScenario('Scenario 1');
defaultScenario.allocate(reportLevels, reportingSystem);
defaultScenario.allocate(reportLow, reportingSystem);

Save the allocation set.

allocSet.save;

Optionally, you can delete the allocation between reporting low tire pressure and the reporting
system.

defaultScenario.deallocate(reportLow, reportingSystem);

See Also
allocate | getScenario | systemcomposer.allocation.AllocationScenario |
systemcomposer.allocation.AllocationSet | systemcomposer.allocation.editor

 Create and Manage Allocations

6-3

More About
• “Allocate Architectures in a Tire Pressure Monitoring System” on page 6-5

6 Analyze Architecture Model

6-4

Allocate Architectures in a Tire Pressure Monitoring System
This example shows how to use allocations to analyze a tire pressure monitoring system.

Overview

In Systems Engineering, it is common to describe a system at different levels of abstraction. For
example, you can describe a system in terms of its high-level functions. These functions may not have
any behavior associated with them but most likely trace back to some operating requirements the
system must fulfill. We refer to this layer (or architecture) as the functional architecture. In this
example, an automobile tire pressure monitoring system is described in three different architectures:

1 Functional Architecture — Describes the system in terms of its high-level functions. The
connections show dependencies between functions.

2 Logical Architecture — Describes the system in terms of its logical components and how data is
exchanged between them. Additionally, this architecture specifies behaviors for model simulation.

3 Platform Architecture — Describes the physical hardware needed for the system at a high level.

The allocation process is defined as linking these three architectures that fully describe the system.
The linking captures the information each architectural layer and makes it accessible to the others.

Use this command to open the project.

scExampleTirePressureMonitorSystem

Open the FunctionalAllocation.mldax file which displays allocations from
TPMS_FunctionalArchitecture to TPMS_LogicalArchitecture. The elements of
TPMS_FunctionalArchitecture are displayed in the first column and the elements of
TPMS_LogicalArchitecture are displayed in the first row. The arrows indicate the allocations
between model elements.

 Allocate Architectures in a Tire Pressure Monitoring System

6-5

This figure displays allocations in the architectural component level. The arrows display allocated
components in the model. You can observe allocations for each element in the model hierarchy.

The rest of the example shows how you can use this allocation information to further analyze the
model.

Functional to Logical Allocation and Coverage Analysis

This section shows you how to perform coverage analysis to verify that all functions have been
allocated. This process requires using the allocation information specified between the functional and
logical architectures.

To start the analysis, load the allocation set.

allocSet = systemcomposer.allocation.load('FunctionalAllocation');
scenario = allocSet.Scenarios;

Verify that each function in the system is allocated.

import systemcomposer.query.*;
[~, allFunctions] = allocSet.SourceModel.find(HasStereotype(IsStereotypeDerivedFrom("TPMSProfile.Function")));
unAllocatedFunctions = [];
for i = 1:numel(allFunctions)
 if isempty(scenario.getAllocatedTo(allFunctions(i)))
 unAllocatedFunctions(end+1) = allFunctions(i);
 end
end

if isempty(unAllocatedFunctions)
 fprintf('All functions are allocated');
else
 fprintf('%d Functions have not been allocated', numel(unAllocatedFunctions));
end

The result displays All functions are allocated to verify that all functions in the system are
allocated.

Analyze Suppliers Providing Functions

This example shows how to identify which functions will be provided by which suppliers using the
specified allocations. The supplier information is stored in the logical model, since these are the
components that the suppliers will be delivering to the system integrator.

6 Analyze Architecture Model

6-6

suppliers = {'Supplier A', 'Supplier B', 'Supplier C', 'Supplier D'};
functionNames = arrayfun(@(x) x.Name, allFunctions, 'UniformOutput', false);
numFunNames = length(allFunctions);
numSuppliers = length(suppliers);
allocTable = table('Size', [numFunNames, numSuppliers], 'VariableTypes', repmat("double", 1, numSuppliers));
allocTable.Properties.VariableNames = suppliers;
allocTable.Properties.RowNames = functionNames;
for i = 1:numFunNames
 elem = scenario.getAllocatedTo(allFunctions(i));
 for j = 1:numel(elem)
 elemSupplier = elem(j).getEvaluatedPropertyValue("TPMSProfile.LogicalComponent.Supplier");
 allocTable{i, strcmp(elemSupplier, suppliers)} = 1;
 end

end

The table shows which suppliers are responsible for the corresponding functions.

Analyze Software Deployment Strategies

You can determine if the Engine Control Unit(ECU) has enough capacity to house all the software
components. The software components are allocated to the cores themselves, but the ECU is the
component that has the budget property.

Get the platform architecture.

platformArch = systemcomposer.loadModel('PlatformArchitecture');

Load the allocation.

softwareDeployment = systemcomposer.allocation.load('SoftwareDeployment');

frontECU = platformArch.lookup('Path', 'PlatformArchitecture/Front ECU');
rearECU = platformArch.lookup('Path', 'PlatformArchitecture/Rear ECU');

scenario1 = softwareDeployment.getScenario('Scenario 1');
scenario2 = softwareDeployment.getScenario('Scenario 2');
frontECU_availMemory = frontECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");
rearECU_availMemory = rearECU.getEvaluatedPropertyValue("TPMSProfile.ECU.MemoryCapacity");

frontECU_memoryUsed1 = getUtilizedMemoryOnECU(frontECU, scenario1);
frontECU_isOverBudget1 = frontECU_memoryUsed1 > frontECU_availMemory;
rearECU_memoryUsed1 = getUtilizedMemoryOnECU(rearECU, scenario1);
rearECU_isOverBudget1 = rearECU_memoryUsed1 > rearECU_availMemory;

frontECU_memoryUsed2 = getUtilizedMemoryOnECU(frontECU, scenario2);
frontECU_isOverBudget2 = frontECU_memoryUsed2 > frontECU_availMemory;

 Allocate Architectures in a Tire Pressure Monitoring System

6-7

rearECU_memoryUsed2 = getUtilizedMemoryOnECU(rearECU, scenario2);
rearECU_isOverBudget2 = rearECU_memoryUsed2 > rearECU_availMemory;

Build a table to showcase the results.

softwareDeploymentTable = table([frontECU_memoryUsed1;frontECU_availMemory; ...
 frontECU_isOverBudget1;rearECU_memoryUsed1;rearECU_availMemory;rearECU_isOverBudget1], ...
 [frontECU_memoryUsed2; frontECU_availMemory; frontECU_isOverBudget2;rearECU_memoryUsed2; ...
 rearECU_availMemory; rearECU_isOverBudget2], ...
 'VariableNames',{'Scenario 1','Scenario 2'},...
 'RowNames', {'Front ECUMemory Used (MB)', 'Front ECU Memory (MB)', 'Front ECU Overloaded', ...
 'Rear ECU Memory Used (MB)', 'Rear ECU Memory (MB)', 'Rear ECU Overloaded'})

function memoryUsed = getUtilizedMemoryOnECU(ecu, scenario)
% For each of the components in the ECU, accumate the binary size
% required for each of the allocated software components.

coreNames = {'Core1','Core2','Core3','Core4'};
memoryUsed = 0;
for i = 1:numel(coreNames)
 core = ecu.Model.lookup('Path', [ecu.getQualifiedName '/' coreNames{i}]);
 allocatedSWComps = scenario.getAllocatedFrom(core);
 for j = 1:numel(allocatedSWComps)
 binarySize = allocatedSWComps(j).getEvaluatedPropertyValue("TPMSProfile.SWComponent.BinarySize");
 memoryUsed = memoryUsed + binarySize;
 end
end

end

See Also
getAllocatedFrom | getAllocatedTo | getScenario | load

More About
• “Create and Manage Allocations” on page 6-2

6 Analyze Architecture Model

6-8

Analyze Architecture
Write analyses based on element properties to perform data-driven trade studies and verify system
requirements. Consider an electromechanical system where there is a trade-off between cost and
weight, and lighter components tend to cost more. The decision process involves analyzing the overall
cost and weight of the system based on the properties of its elements, and iterating on the properties
to arrive at a solution that is acceptable both from the cost and weight perspective.

The analysis workflow consists of these steps:

• Define a profile containing a set of property sets that describe some analyzable properties (for
example, cost and weight)

• Apply the profile to an architecture model and add property sets from that profile to elements of
the model (components, ports, or connectors)

• Specify values for the properties on those elements
• Create an instance of the architecture model, which is a tree of elements, corresponding to the

model hierarchy with all shared architectures expanded and a variant configuration applied
• Write an analysis function to compute values necessary for the study
• Run the analysis function

Set Tags and Properties for Analysis
Enable analysis by tagging model elements and setting property values.

Load the Model

Open the systemWithProps model.

systemWithProps

 Analyze Architecture

6-9

Import a Profile

Enable analysis of properties by first importing a profile. In the Profiles section of the toolstrip, click
Manage > Import and browse to the profile.

Apply Stereotypes to Model Elements

Apply stereotypes to all model elements that are part of the analysis. Use the menu items that apply
stereotypes to all elements of a certain type. Select Apply Stereotypes > Apply to and then
Components > This layer. Make sure you apply the stereotype to the top-level component, if a
cumulative value is to be computed.

Set Property Values

Set property values for each model element.

1 Select the model element.
2 In the Property Inspector, expand the stereotype name and type values for properties.

6 Analyze Architecture Model

6-10

Create a Model Instance for Analysis
Create an instance of the architecture model that you can use for analysis. In the Views section,
select Analysis Model > Analysis Model. In this dialog box, specify all the parameters required to
create and view an analysis model.

 Analyze Architecture

6-11

The stereotypes tree lists the stereotypes of all profiles that have been loaded in the current session
and allows you to select those whose properties should be available in the instance model. You can
browse for an analysis function, create a new one, or skip analysis at this point. If the analysis
function requires inputs other than elements in the model (such as an exchange rate to compute cost)
enter it in Function arguments. Select a mode for iterating through model elements, for example,
Bottom-up to move from the leaves of the tree to the root.

To view the instance, click Instantiate.

6 Analyze Architecture Model

6-12

The Analysis Viewer shows all components, ports, and connectors in the first column. The other
columns are properties for all stereotypes chosen for this instance. If a property is not part of a
stereotype applied to an element, that field is greyed out. You can use the Filter button to hide
properties for certain stereotypes. When you select an element, Instance Properties shows its
stereotypes and property values. You can save an instance in a MAT-file, and open it again in the
Analysis Viewer. If you make changes in the model while an instance is open, you can synchronize the
instance with the model by clicking Update. Unsynchronized changes are shown in a different color.

Write Analysis Function
Write a function to analyze the architecture model using instance API. Analysis functions are MATLAB
functions that compute values necessary to evaluate the architecture using properties of each
element in the model instance.

You can add an analysis function as you set up the analysis instance. After you select the stereotypes

of interest, create a template function by clicking the button next to the Analysis function field.
The generated M-file includes the code to obtain all property values from all stereotypes that are
subject to analysis. The analysis function operates on a single element — aggregate values are
generated by iterating this function over all elements in the model when you run the analysis from
Analysis Viewer.
function systemWithProps_1(instance,varargin)
% systemWithProps_1 Example Analysis Function
if instance.isComponent()
 sysComponent_unitPrice = instance.getValue("PhysicalElement.unitCost");
 for child = instance.Components
 comp_price = child.getValue("PhysicalElement.unitCost");
 sysComponent_unitPrice = sysComponent_unitPrice + comp_price;
 end
 instance.setValue("PhysicalElement.unitCost",sysComponent_unitPrice);
end

In the generated file, instance is the instance of the element on which the analysis function runs
currently. You can perform these operations for analysis:

• Access a property of the instance: instance.getValue("<stereotype>.<property>")

 Analyze Architecture

6-13

• Set a property of an instance: instance.setValue("<stereotype>.<property>",value)
• Access the subcomponents of a component: instance.Components
• Access the connectors in component: instance.Connectors

The getValue function generates an error if the property does not exist. You must use error handling
functions such as try-catch statements if it is possible that some elements in the model do not use
the stereotypes.

As an example, this code computes the weight of a component as a sum of the weights of its
subcomponents.

if instance.isComponent()
 weight = 0;
 for child=instance.Components
 subcomp_weight = child.getValue("PhysicalElement.weight");
 weight = weight + subcomp_weight;
 end
 instance.setValue("PhysicalElement.weight",weight)
end

Once the analysis function is complete, add it to the analysis. An analysis function can take additional
input arguments, for example, a conversion constant if the weights are in different units in different
stereotypes. When this code runs for all components recursively, starting from the deepest
components in the hierarchy to the top level, the overall weight of the system is assigned to the
weight property of the top-level component.

Run Analysis Function
Run an analysis function using the Analysis Viewer.

1 Select or change the analysis function using the Analyze menu.
2 Select the iteration method.

• Preorder — Start from the top level, move to a child component, process the subcomponents
of that component recursively before moving to a sibling component.

• Topdown — Like pre-order, but process all sibling components before moving to their
subcomponents.

• Postorder — Start from components with no subcomponents, process each sibling and then
move to parent.

• Bottomup — Like post-order, but process all subcomponents at the same depth before moving
to their parents.

The iteration method depends on what kind of analysis is to be run. For example, for an analysis
where the component weight is the sum of the weights of its components, you must make sure
the subcomponent weights are computed first, so the iteration method must be bottom-up.

3 Click the Analyze button.

System Composer runs the analysis function over each model element and computes results. The
computed properties are shown in a different color in the Analysis Viewer.

6 Analyze Architecture Model

6-14

See Also
systemcomposer.analysis.Instance

More About
• “Define Profiles and Stereotypes” on page 4-2
• “Use Stereotypes and Profiles” on page 4-9

 Analyze Architecture

6-15

Battery Sizing and Automotive Electrical System Analysis
Overview

This example shows how to model a typical automotive electrical system as an architectural model
and run primitive analysis. The elements in the model can be broadly grouped as either source or
load. Various properties of the sources and loads are set as part of the stereotype. The example uses
the iterate method of the specification API to iterate through each element of the model and run
analysis using the stereotype properties.

Structure of the Model

The generator charges the battery while the engine is running. The battery, along with the generator
supports the electrical loads in the vehicle, like ECU, radio, and body control. The inductive loads like
motors and other coils have the InRushCurrent stereotype property defined. Based on the properties
set on each component, the following analyses are performed:

• Total KeyOffLoad
• Number of days required for KeyOffLoad to discharge 30 percent of the battery
• Total CrankingInRush current
• Total Cranking current
• Ability of the battery to start the vehicle at 0 degrees F based on the battery cold cranking amps

(CCA). The discharge time is computed based on Puekert coefficient (k), which describes the
relationship between the rate of discharge and the available capacity of the battery.

Load the Model and Run the Analysis

archModel = systemcomposer.openModel('scExampleAutomotiveElectricalSystemAnalysis');
% Instantiate battery sizing class used by the analysis function to store
% analysis results.
objcomputeBatterySizing = computeBatterySizing;
% Run the analysis using the iterator.
archModel.iterate('Topdown',@computeLoad,objcomputeBatterySizing);
% Display analysis results.
objcomputeBatterySizing.displayResults;

Total KeyOffLoad: NaN mA
Number of days required for KeyOffLoad to discharge 30% of battery: NaN.
Total CrankingInRush current: 70 A
Total Cranking current: 104 A
CCA of the specifed battery is sufficient to start the car at 0 F.

6 Analyze Architecture Model

6-16

Close the Model

bdclose('scExampleAutomotiveElectricalSystemAnalysis');

 Battery Sizing and Automotive Electrical System Analysis

6-17

Modeling System Architecture of Small UAV
Overview

This example shows how to set up the architecture for a small unmanned aerial vehicle, composed of
six top-level components. You also learn how to refine your architecture design by authorizing
interfaces, linking to requirements, defining profiles and stereotypes, and running analysis on such an
architecture model.

Open the project.

>> scExampleSmallUAV

Each top-level component is decomposed into its subcomponents. Navigate through the hierarchy to
view the composition for each component. The root component, SmallUAV, has input and output ports
that represent data exchange between the system and its environment.

Specify Interfaces

Define interfaces in a data dictionary. From the menu, click on Interface Editor.

Click the GS Commands port on the architecture model to highlight the
architecture_gsCommands interface and indicate the assignment of the interface.

6 Analyze Architecture Model

6-18

Inspect Requirements

Components in the architecture model link to system requirements defined in
smallUAVReqs.slreqx. Open the Requirements Perspective. In the bottom right corner of the
model pane, click the Show Perspectives button. Then, click the Requirements button.

Select components on the model to see the requirement they link to, or, conversely, select items in the
Requirements view to see which components implement them.

 Modeling System Architecture of Small UAV

6-19

Define Profiles and Stereotypes

To complete specifications and enable analysis later in the design process, stereotypes add custom
metadata to architecture model elements. This model has stereotypes for these elements:

• On-board element, applicable to components
• RF connector, applicable to ports
• RF wiring, applicable to connectors

Stereotypes are defined in XML files by using Profiles. The profile UAVComponent.xml is attached to
this model. Edit a profile by using the Profile Editor. On the Modeling tab, click Import > Edit.

The display appears below.

6 Analyze Architecture Model

6-20

Analyze the Model

To run static analyses on your system, create an Analysis Model from your architecture model. An
Analysis Model is a tree of instances generated from the elements of the architecture model in which
all referenced models are flattened out, and all variants are resolved.

Click Analysis Model on the Views menu.

Run a mass rollup on this model. In the dialog, select the stereotypes that you want to include in your
analysis. Select the analysis function by browsing to utilities/massRollUp.m. Set the model
iteration mode to Bottom-up.

 Modeling System Architecture of Small UAV

6-21

Click Instantiate to generate an analysis.

6 Analyze Architecture Model

6-22

The analysis function iterates through model elements bottom up, assigning the Mass property of
each component as a sum of the Mass properties of its subcomponents. The overall weight of the
system is assigned to the Mass property of the top level component, SmallUAV.

 Modeling System Architecture of Small UAV

6-23

Link and Trace Requirements
This example shows how to work with requirements in an architecture model.

Allocate functional requirements to components to establish traceability. By creating a link between a
component and the related requirement, you can track whether all requirements are represented in
the architecture. You can also keep requirements and design in sync, for example, if a requirement
changes or if the design warrants a revision of the requirements. You can link components to
requirements in Simulink® Requirements™, test cases in Simulink Test™, or selections in MATLAB®,
Microsoft® Excel®, or Microsoft Word.

Open the model exMobileRobot.

open_system('exMobileRobot')

6 Analyze Architecture Model

6-24

Open the requirements MobileRobotRequirements.slreqx in the Requirements Editor. The
requirements file must be on the MATLAB path. Select the requirement to be linked.

 Link and Trace Requirements

6-25

Select the component to be linked in the architecture model. Right-click and select Requirements >
Link to Selection in Requirements Editor.

6 Analyze Architecture Model

6-26

When you first link a requirement in an architecture model, a link set file with extension .slmx is
created to store requirement links. The Requirements context menu displays the linked
requirements.

You can also create a link using the Requirements Editor. First, select the component in the
architecture model. Then, in the Requirements Editor, right-click the requirement and select Link
from <component_name> (Component).

 Link and Trace Requirements

6-27

You can also create requirement links with blocks and subsystems in Simulink models. for more
information, see “Link Blocks and Requirements” (Simulink Requirements).

The badge on a component indicates that it is linked to a requirement. This badge also shows at
the lower-left corner of the architecture model.

To trace requirement links to a component, right-click and select Requirements > Open Outgoing
Links dialog. Here, you can create new requirements, delete existing ones, and change their order.

6 Analyze Architecture Model

6-28

Related Topics

• “Manage Requirements” on page 2-2
• “View Linked Requirements in Models and Blocks”

 Link and Trace Requirements

6-29

Modeling System Architecture of Keyless Entry System
Overview

This example shows how to set up the architecture for a keyless entry system for a vehicle. You also
learn how to create different architecture views for different stakeholder concerns.

Open the project.

scKeylessEntrySystem

Opening the Architecture Views

You can create, view, and edit architecture views in the Architecture Views editor. To launch the
editor, select the Architecture Views button from the Modeling tab in the toolstrip. Select from one
of the existing views for the model. The model has these views:

• Key FOB Position Dataflow — A view of the components in the model that are making use of the
KeyFOBPosition interface.

• Door Lock System Supplier Breakdown — A view of the components in the door lock system
grouped by which supplier is providing the given components.

• Sound System Supplier Breakdown — A view of the components in the sound system grouped by
which supplier is providing the given components.

• Software Component Review Status — A view of the components in the model with the
SoftwareComponent stereotype applied grouped by the value of the ReviewStatus property.

6 Analyze Architecture Model

6-30

Extract the Architecture of a Simulink Model Using System
Composer

Overview

This example shows how to export an existing Simulink model to a System Composer architecture
model. The algorithmic sections of the original model are removed and structural information is
preserved during this process. Requirements links, if any, are also preserved.

Converting Simulink Model to System Composer Architecture

System Composer converts structural constructs in a Simulink model to equivalent architecture
model constructs:

• Subsystems to components
• Variant subsystems to variant components
• Bus objects to interfaces
• Referenced models to reference components

Open the Model

Open the Simulink model of a system.

scExamplePowerWindowBottomUp

 Extract the Architecture of a Simulink Model Using System Composer

6-31

6 Analyze Architecture Model

6-32

 Extract the Architecture of a Simulink Model Using System Composer

6-33

Export the Model

Extract an architecture model from the original model.

systemcomposer.extractArchitectureFromSimulink('slexPowerWindowExample','PowerWindowArchModel');
Simulink.BlockDiagram.arrangeSystem('PowerWindowArchModel');
systemcomposer.openModel('PowerWindowArchModel');

6 Analyze Architecture Model

6-34

 Extract the Architecture of a Simulink Model Using System Composer

6-35

6 Analyze Architecture Model

6-36

 Extract the Architecture of a Simulink Model Using System Composer

6-37

Close the Model and Project

Close the Simulink project and the created architecture model.

bdclose('PowerWindowArchModel');
close(proj);

6 Analyze Architecture Model

6-38

Build an Architecture Model from Command Line
This example shows how to build an architecture model using the System Composer API.

Prepare Workspace

systemcomposer.profile.Profile.closeAll;

Build a Model

Add Components, Ports, and Connections

model = systemcomposer.createModel('mobileRobotAPI');
arch = model.Architecture;
components = addComponent(arch,{'Sensor','Planning','Motion'});
sensorPorts = addPort(components(1).Architecture,{'MotionData','SensorData'},{'in','out'});
planningPorts = addPort(components(2).Architecture,{'Command','SensorData','MotionCommand'},{'in','in','out'});
motionPorts = addPort(components(3).Architecture,{'MotionCommand','MotionData'},{'in','out'});
c_sensorData = connect(arch,components(1),components(2));
c_motionData = connect(arch,components(3),components(1));
c_motionCommand = connect(arch,components(2),components(3));

Add and Connect an Architecture Port

Add a port on the architecture. This is an architecture port.

archPort = addPort(arch,'Command','in');

The connect command requires a component port as argument. Obtain the component port and
connect:

compPort = getPort(components(2),'Command');
c_Command = connect(archPort,compPort);

Save the model.

save(model)

Open the model

open_system(gcs);

Arrange the layout by pressıng Ctrl+Shift+A or using the following command.

Simulink.BlockDiagram.arrangeSystem('mobileRobotAPI');

 Build an Architecture Model from Command Line

6-39

Create and Apply Profile and Stereotypes

Profiles are xml files that can be applied to any model.

Create a Profile and Add Stereotypes

Create a profile.

profile = systemcomposer.createProfile('GeneralProfile');

Create a stereotype that applies to all element types:

elemSType = addStereotype(profile,'projectElement');

Create stereotypes for different types of components. These types are dictated by design needs and
are at the discretion of the user:

pCompSType = addStereotype(profile,'physicalComponent','AppliesTo','Component');
sCompSType = addStereotype(profile,'softwareComponent','AppliesTo','Component');

Create a stereotype for connections:

sConnSType = addStereotype(profile,'standardConn','AppliesTo','Connector');

Add Properties

Add properties to stereotypes. You can use properties to capture metadata for model elements and
analyze non-functional requirements. These properties are added to all elements to which the
stereotype is applied, in any model that imports the profile.

addProperty(elemSType,'ID','Type','uint8');
addProperty(elemSType,'Description','Type','string');
addProperty(pCompSType,'Cost','Type','double','Units','USD');
addProperty(pCompSType,'Weight','Type','double','Units','g');
addProperty(sCompSType,'develCost','Type','double','Units','USD');
addProperty(sCompSType,'develTime','Type','double','Units','hour');
addProperty(sConnSType,'unitCost','Type','double','Units','USD');
addProperty(sConnSType,'unitWeight','Type','double','Units','g');
addProperty(sConnSType,'length','Type','double','Units','m');

6 Analyze Architecture Model

6-40

Apply Profile to Model

Apply profile to the model:

applyProfile(model,'GeneralProfile');

Apply stereotypes to components. Some components are physical components, others are software
components.

applyStereotype(components(2),'GeneralProfile.softwareComponent')
applyStereotype(components(1),'GeneralProfile.physicalComponent')
applyStereotype(components(3),'GeneralProfile.physicalComponent')

Apply the connector stereotype to all connections:

batchApplyStereotype(arch,'Connector','GeneralProfile.standardConn');

Apply the general element stereotype to all connectors and ports:

batchApplyStereotype(arch,'Component','GeneralProfile.projectElement');
batchApplyStereotype(arch,'Connector','GeneralProfile.projectElement');

Set properties for each component:

setProperty(components(1),'GeneralProfile.projectElement.ID','001');
setProperty(components(1),'GeneralProfile.projectElement.Description','''Central unit for all sensors''');
setProperty(components(1),'GeneralProfile.physicalComponent.Cost','200');
setProperty(components(1),'GeneralProfile.physicalComponent.Weight','450');
setProperty(components(2),'GeneralProfile.projectElement.ID','002');
setProperty(components(2),'GeneralProfile.projectElement.Description','''Planning computer''');
setProperty(components(2),'GeneralProfile.softwareComponent.develCost','20000');
setProperty(components(2),'GeneralProfile.softwareComponent.develTime','300');
setProperty(components(3),'GeneralProfile.projectElement.ID','003');
setProperty(components(3),'GeneralProfile.projectElement.Description','''Motor and motor controller''');
setProperty(components(3),'GeneralProfile.physicalComponent.Cost','4500');
setProperty(components(3),'GeneralProfile.physicalComponent.Weight','2500');

Set the properties of connections to be identical:

connections = [c_sensorData c_motionData c_motionCommand c_Command];
for k = 1:length(connections)
 setProperty(connections(k),'GeneralProfile.standardConn.unitCost','0.2');
 setProperty(connections(k),'GeneralProfile.standardConn.unitWeight','100');
 setProperty(connections(k),'GeneralProfile.standardConn.length','0.3');
end

Create an Interface

Create a data dictionary and add an interface:

dictionary = systemcomposer.createDictionary('SensorInterfaces.sldd');
interface = addInterface(dictionary,'GPSInterface');

Link the interface to the model:

linkDictionary(model,'SensorInterfaces.sldd');

Identify the interface in the dictionary:

 Build an Architecture Model from Command Line

6-41

interface_GPS = getInterface(model.InterfaceDictionary,'GPSInterface');

Set the interface for the port:

setInterface(sensorPorts(2),interface_GPS);

Save Data Dictionary

Save the changes to the data dictionary.

dictionary.save();

Clean Up

Uncomment the following code and run to clean up the artifacts created by this example:

% bdclose('mobileRobotAPI');
% systemcomposer.profile.Profile.closeAll;
% delete('SensorInterfaces.sldd');

6 Analyze Architecture Model

6-42

Import and Export Architectures
This example shows how to import and export architectures. In System Composer, an architecture is
fully defined by three sets of information:

• Component information
• Port information
• Connection information

You can import an architecture into System Composer when this information is defined in, or
converted into, MATLAB tables.

In this example, the architecture information of a simple UAV system is defined in an Excel
spreadsheet and is used to create a System Composer architecture model. It also links elements to
the specified system level requirement. You can modify the files in this example to import
architectures defined in external tools, when the data includes the required information. The example
also shows how to export this architecture information from System Composer architecture model to
an Excel spreadsheet.

Architecture Definition Data

You can characterize the architecture as a network of components and import by defining
components, ports, connections, interfaces and requirement links in MATLAB tables. The component
table must include name, unique ID, and parent component ID for each component. It can also
include other relevant information required to construct the architecture hierarchy for referenced
model, and stereotype qualifier names. The port table must include port name, direction, component,
and port ID information. Port interface information may also be required to assign ports to
components. The connection table includes information to connect ports. At a minimum, this table
must include the connection ID, source port ID, and destination port ID.

The systemcomposer.importModel(importModelName) API :

• Reads stereotype names from Component table and load the profiles

• Creates components and attaches ports

• Creates connections using the connection map

• Sets interfaces on ports

• Links elements to specified requirements

• Saves referenced models

• Saves the architecture model

Make sure the current directory is writable because this example will create files.

[stat, fa] = fileattrib(pwd);
if ~fa.UserWrite
 disp('This script must be run in a writable directory');
 return;
end
% Instantiate adapter class to read from Excel.
modelName = 'simpleUAVArchitecture';

 Import and Export Architectures

6-43

% importModelFromExcel function reads the Excel file and creates the MATLAB
% tables.
importAdapter = ImportModelFromExcel('SmallUAVModel.xls','Components','Ports','Connections','PortInterfaces','RequirementLinks');
importAdapter.readTableFromExcel();

Import an Architecture

model = systemcomposer.importModel(modelName,importAdapter.Components,importAdapter.Ports,importAdapter.Connections,importAdapter.Interfaces,importAdapter.RequirementLinks);
% Auto-arrange blocks in the generated model
Simulink.BlockDiagram.arrangeSystem(modelName);

Export an Architecture

You can export an architecture to MATLAB tables and then convert to an external file

exportedSet = systemcomposer.exportModel(modelName);
% The output of the function is a structure that contains the component table, port table,
% connection table, the interface table, and the requirement links table.
% Save the above structure to excel file.
SaveToExcel('ExportedUAVModel',exportedSet);

Close Model

bdclose(modelName);

6 Analyze Architecture Model

6-44

Import System Composer Architecture using Model Builder.
This example shows how to import architecture specifications into System Composer using the
systemcomposer.io.modelBuilder() utility class. These architecture specifications can be defined in
external source such as Excel file.

In system composer, an architecture is fully defined by three sets of information:

• Components and its position in architecture hierarchy
• Ports and its mapping to components
• Connections between the components through ports In this example, we also import interface data
definitions from external source.

• Interfaces in architecture models and its mapping to ports

This example uses systemcomposer.modelBuilder class to pass all of the above architecture
information and import a System Composer model.

In this example, architecture information of a small UAV system is defined in an Excel spreadsheet
and is used to create a System Composer architecture model.

External Source Files

• Architecture.xlsx : This Excel file contains hierarchical information of the architecture model. This
example maps the external source data to System Composer model elements. Below is the
mapping of information in column names to System Composer model elements.

 # Element : Name of the element. Either can be component or port name.
 # Parent : Name of the parent element.
 # Class : Can be either component or port(Input/Output direction of the port).
 # Domain : Mapped as component property. Property "Manufacturer" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Domain values in excel source file.
 # Kind : Mapped as component property. Property "ModelName" defined in the
 profile UAVComponent under Stereotype PartDescriptor maps to Kind values in excel source file.
 # InterfaceName : If class is of port type. InterfaceName maps to name of the interface linked to port.
 # ConnectedTo : In case of port type, it specifies the connection to
 other port defined in format "ComponentName::PortName".

• DataDefinitions.xlsx : This excel file contains interface data definitions of the model. This example
assumes the below mapping between the data definitions in the source excel file and interfaces
hierarchy in System Composer :

 # Name : Name of the interface or element.
 # Parent : Name of the parent interface Name(Applicable only for elements) .
 # Datatype : Datatype of element. Can be another interface in format
 Bus: InterfaceName
 # Dimensions : Dimensions of the element.
 # Units : Unit property of the element.
 # Minimum : Minimum value of the element.
 # Maximum : Maximum value of the element.

Step 1. Instantiate the model builder class

You can instantiate the model builder class with a profile name.

Make sure the current directory is writable because this example will be creating files.

 Import System Composer Architecture using Model Builder.

6-45

[stat, fa] = fileattrib(pwd);
if ~fa.UserWrite
 disp('This script must be run in a writable directory');
 return;
end
% Name of the model to build.
modelName = 'scExampleModelBuider';
% Name of the profile.
profile = 'UAVComponent';
% Name of the source file to read architecture information.
architectureFileName = 'Architecture.xlsx';

% Instantiate the ModelBuilder
builder = systemcomposer.io.ModelBuilder(profile);

Step 2. Build Interface Data Definitions.

Reading the information in external source file DataDefinitions.xlsx, we build the interface data
model.

Create MATLAB tables from source Excel file.

opts = detectImportOptions('DataDefinitions.xlsx');
opts.DataRange = 'A2'; % force readtable to start reading from the second row.
definitionContents = readtable('DataDefinitions.xlsx', opts);

% systemcomposer.io.IdService class generates unique ID for a
% given key
idService = systemcomposer.io.IdService();

for rowItr =1:numel(definitionContents(:,1))
 parentInterface = definitionContents.Parent{rowItr};
 if isempty(parentInterface)
 % In case of interfaces adding the interface name to model builder.
 interfaceName = definitionContents.Name{rowItr};
 % Get unique interface ID. getID(container,key) generates
 % or returns(if key is already present) same value for input key
 % within the container.
 interfaceID = idService.getID('interfaces',interfaceName);
 % Builder utility function to add interface to data
 % dictionary.
 builder.addInterface(interfaceName,interfaceID);
 else
 % In case of element read element properties and add the element to
 % parent interface.
 elementName = definitionContents.Name{rowItr};
 interfaceID = idService.getID('interfaces',parentInterface);
 % ElementID is unique within a interface.
 % Appending 'E' at start of ID for uniformity. The generated ID for
 % input element is unique within parent interface name as container.
 elemID = idService.getID(parentInterface,elementName,'E');
 % Datatype, dimensions, units, minimum and maximum properties of
 % element.
 datatype = definitionContents.DataType{rowItr};
 dimensions = string(definitionContents.Dimensions(rowItr));
 units = definitionContents.Units(rowItr);
 % Make sure that input to builder utility function is always a
 % string.

6 Analyze Architecture Model

6-46

 if ~ischar(units)
 units = '';
 end
 minimum = definitionContents.Minimum{rowItr};
 maximum = definitionContents.Maximum{rowItr};
 % Builder function to add element with properties in interface.
 builder.addElementInInterface(elementName, elemID, interfaceID, datatype, dimensions, units, 'real', maximum, minimum);
 end
end

Step 3. Build Architecture Specifications.

Architecture specifications de Create MATLAB tables from source Excel file.

excelContents = readtable(architectureFileName);
% Iterate over each row in table.
for rowItr =1:numel(excelContents(:,1))
% Read each row of the excel file and columns.
 class = excelContents.Class(rowItr);
 Parent = excelContents.Parent(rowItr);
 Name = excelContents.Element{rowItr};
 % Populating the contents of table using the builder.
 if strcmp(class,'component')
 ID = idService.getID('comp',Name);
 % Root ID is by default set as zero.
 if strcmp(Parent,'scExampleSmallUAV')
 parentID = "0";
 else
 parentID = idService.getID('comp', Parent);
 end
 % Builder utility function to add component.
 builder.addComponent(Name,ID,parentID);
 % Reading the property values
 kind = excelContents.Kind{rowItr};
 domain = excelContents.Domain{rowItr};
 % *Builder to set stereotype and property values*
 builder.setComponentProperty(ID, 'StereotypeName','UAVComponent.PartDescriptor','ModelName',kind,'Manufacturer',domain);
 else
 % In this example, concatenation of port name and parent component name
 % is used as key to generate unique IDs for ports.
 portID = idService.getID('port',strcat(Name,Parent));
 % For ports on root architecture. compID is assumed as "0".
 if strcmp(Parent,'scExampleSmallUAV')
 compID = "0";
 else
 compID = idService.getID('comp',Parent);
 end
 % Builder utility function to add port.
 builder.addPort(Name, class, portID, compID);

 % InterfaceName specifies the name of the interface linked to port.
 interfaceName = excelContents.InterfaceName{rowItr};

 % Get interface ID. getID() will return the same IDs already
 % generated while adding interface in Step 2.
 interfaceID = idService.getID('interfaces',interfaceName);
 % Builder to map interface to port.
 builder.addInterfaceToPort(interfaceID, portID);

 Import System Composer Architecture using Model Builder.

6-47

 % Reading the connectedTo information to build connections between
 % components.
 connectedTo = excelContents.ConnectedTo{rowItr};
 % connectedTo is in format -:
 % (DestinationComponentName::DestinationPortName).
 % For this example, considering the current port as source of the connection.
 if ~isempty(connectedTo)
 connID = idService.getID('connection',connectedTo);
 splits = split(connectedTo,'::');
 % Get the port ID of the connected port.
 % In this example, port ID is generated by concatenating
 % port name and parent component name. If port id is already
 % generated getID() function returns the same id for input key.
 connectedPortID = idService.getID('port',strcat(splits(2),splits(1)));
 % Using builder to populate connection table.
 sourcePortID = portID;
 destPortID = connectedPortID;
 % Builder to add connections.
 builder.addConnection(connectedTo,connID,sourcePortID,destPortID);
 end
 end
end

Step 3. Builder build method imports model from populated tables.

[model, importReport] = builder.build(modelName);

Close Model

bdclose(modelName);

6 Analyze Architecture Model

6-48

	Architecture Model Editing
	Compose Architecture Visually
	Create an Architecture Model
	Components
	Ports
	Connections
	Importing Architectures

	Decompose and Reuse Components
	Decompose a Component
	Create a Reference Architecture
	Use a Reference Architecture
	Inline a Reference Architecture
	Create Variants

	Create Spotlight Views
	Build an Architecture Model from Command Line
	Create Architecture Views Interactively
	Create Filtered Views
	Create Freeform Views

	Creating Architectural Views Programmatically
	Example 1: Hardware Component Review Status
	Example 2: FOB Locator System Supplier View
	Finding Elements in a System Composer Model Using Queries

	Import and Export Architecture Models
	Define a Basic Architecture
	Import a Basic Architecture
	Extend the Basic Architecture Import
	Export an Architecture

	Display Component Hierarchy Using Hierarchy Views
	Switch Between Component Diagram and Hierarchy Diagram

	Requirements
	Manage Requirements

	Interface Management
	Define Interfaces
	Create Interface

	Assign Interfaces to Ports
	Save, Link, and Delete Interfaces
	Store Interfaces in a Data Dictionary
	Add Referenced Data Dictionaries
	Use Referenced Data Dictionaries for Projects with Multiple Models

	Interface Adapter
	Map Similar Interfaces
	Use Unit Delay to Break Algebraic Loop
	Use Rate Transition Between Simulink Behaviors

	Define Architectural Properties
	Define Profiles and Stereotypes
	Create a Profile and Add Stereotypes
	Add Properties with Stereotypes
	Default Stereotypes
	Stereotype-Based Styling

	Use Stereotypes and Profiles
	Apply a Stereotype
	Remove a Stereotype
	Extend a Stereotype

	Use Simulink Models with System Composer
	Implement Components in Simulink
	Create a Simulink Behavior Model
	Link to an Existing Simulink Behavior Model

	Extract Architecture from Simulink Model

	Analyze Architecture Model
	Create and Manage Allocations
	Allocate Architectures in a Tire Pressure Monitoring System
	Analyze Architecture
	Set Tags and Properties for Analysis
	Create a Model Instance for Analysis
	Write Analysis Function
	Run Analysis Function

	Battery Sizing and Automotive Electrical System Analysis
	Modeling System Architecture of Small UAV
	Link and Trace Requirements
	Modeling System Architecture of Keyless Entry System
	Extract the Architecture of a Simulink Model Using System Composer
	Build an Architecture Model from Command Line
	Import and Export Architectures
	Import System Composer Architecture using Model Builder.

